EVERYTHING YOU'D WANT TO ASK ABOUT

FACILITY SITING
Everything You'd Want to Ask About Facility Siting

(but didn't think to ask)

Adapted from a list prepared for the State of Texas by the Keystone Center, Keystone Colorado.

Adapted by the Citizens Clearinghouse for Hazardous Wastes, P.O. Box 926, Arlington, VA 22216, (703) 276-7070 from materials received as public information from the State of Texas.

$1.75
The following are questions and concerns you should raise around any hazardous waste facility, either proposed or existing, including landfills, deep well injection sites, surface impoundments, incinerators and resource recovery facilities. Relevant transport and storage issues and concerns are also included. These questions were prepared by a Keystone Center Discussion Group as part of a report for the State of Texas Department of Water Resources. They are not necessarily fully comprehensive and not all questions will apply to all situations. However, the many relevant and important questions should serve as a focus for raising additional issues and concerns.

ISSUES AND QUESTIONS THAT MAY BE PERTINENT

I. Economic considerations

A. Is this facility needed
 I. How was need established
 a. Local and regional survey
 b. On-site or off-site needs
 c. Is it beneficial to good regional hazardous waste management
 d. Is there a generic survey of hazardous waste needs for the area - compatibility with this plan
 e. Is the technology proposed an improvement over that presently available
 f. Will this facility replace on outmoded/worse polluting one
 g. What geographical area will it serve

B. Profit expectations
 1. High or low risk
 2. Longevity of facility
 a. Expansion anticipated
 b. In what time frame
 3. Who owns the facility
 4. Are owners financially backed by others
 5. Who are the competitors

C. Facility operators
 1. Prior experience/operating record
 2. Will company that owns also operate facility
 3. Who will seek the permits
 4. How can operators’ expertise be evaluated if new to this field

D. Economic effects on community
 1. Possible effects on property values
 2. Who will receive any increase in tax base
 3. How much tax revenue may be generated
 4. Will public costs rise
 a. Police protection
 b. Fire protection
 c. Road maintenance
 d. Emergency response equipment and facilities
E. Potential for compensation to community
 1. Donated equipment community may need due to facility's locating nearby
 2. Fees to general revenue fund
 3. Property value guarantees
 4. Parks, etc.

F. Closure and post closure
 1. When is closure anticipated
 2. Who is responsible for the site after closure
 3. What assurances will there be that site will be closed in accordance with the plan
 4. Financial assurances to establish ability to handle problems after closure
 5. Who certifies that site is properly closed
 6. How are people protected from unwittingly buying land after closure
 a. Recorded in deed
 b. What future uses are possible

II. Function of facility
A. Storage

B. Wastes to be handled
 1. What wastes will be handled
 a. In what quantities
 b. Physical and chemical characteristics
 (1) Degree of hazard anticipated
 (2) What makes the waste hazardous
 2. What wastes will not be handled - why
 3. Sources of waste
 a. On-site generation
 b. Off-site generation
 (1) Local
 (2) Regional
 (3) Statewise
 (4) Out-of-state
 (5) Out-of-country
 c. Consumer products from which such waste results
 4. Will nonmanifested wastes be accepted
 5. Where will waste go if not handled at this site

C. Does this facility fit into an integrated hazardous waste management system (reduction, recovery, recycling, sale/exchange, storage, treatment, disposal)
 1. On-site
 2. Regional

D. Is this facility part of a master plan to provide hazardous waste management
 1. Whose plan
 2. How does it fit into plan
 3. Geographical area served by plan
E. Plans for future expansion
 1. Additional facilities
 2. Additional types of facilities
 3. Time frame anticipated

III. Technology to be used - general questions
A. Why was this technology chosen
 1. Are others available
 2. Can wastes to be handled be recycled, sold, exchanged or treated to avoid disposing of as hazardous waste
 3. Engineering design and operating techniques to compensate for any site deficiencies

B. Quality assurance/control
 1. In identifying wastes
 a. Role of generator
 b. Role of facility
 2. Plans for lab work
 3. How are out-of-spec wastes handled
 4. What happens to rejected wastes

C. Reliability of technology
 1. Past experiences with it
 2. Any serious environmental impacts
 3. How was it tested to assure long-term safety and effectiveness

D. Sequence of technology used from arrival of wastes to end process at facility (flow chart)
 1. Analysis of waste
 2. Unloading
 3. Storage
 4. Treatment
 5. Disposal
 6. Any residuals requiring further handling
 7. Monitoring
 8. Closure
 9. Post closure

IV. Technologies to be used - specific questions
A. Land Disposal
 1. Types
 a. Surface impoundment
 b. Land application/treatment
 c. Landfill (burial)
 d. Other - specify
 2. Technical processes preceding land disposal
 a. Treatment, stabilization
 b. Segregation of noncompatible wastes
 c. Handling of containerized waste
 3. Technology to protect environment
 4. Closure plans
 a. Interim partial closure of each cell
 b. Final closure of full facility
 5. Post closure plans
 a. Periodic monitoring and maintenance
b. Post closure period
c. Financing and cost assurance
d. Responsibilities of facility operator, land owner, local and state units of government

B. Deep Well Injection
 1. Well Construction
 a. Depth
 b. Casings
 c. Monitoring equipment
 d. Local faults
 e. Previous wells in area
 2. Pretreatment
 a. Sediment removal
 b. Waste compatibility
 3. Processes to assure environmental protection
 4. Closure Technology
 5. Closure Technology
 6. Technology available if remedial action is needed.

C. Recycling/Recovery
 1. How will it be accomplished
 2. Plans for energy conversion
 3. Will supplemental fuel be needed - what type
 4. Reliability of waste characteristics
 5. Long-term demand

D. Storage
 1. How is waste stored
 2. Length of time in storage
 3. Where does the waste go next

E. Incineration
 1. How complete will destruction be
 2. Will supplemental fuel be needed - What type
 3. Air quality protection
 4. Anticipated air quality monitoring
 5. What monitoring will be done
 6. What are procedures in case of an upset

F. Treatment
 1. What type of treatment will be used
 2. What type of wastes will be treated
 3. How completely will waste be rendered nonhazardous
 4. What will happen to the treated waste

V. Site Characteristics
 A. How are site characteristics determined
 1. What is done in a geotechnical investigation
 2. Other assessment techniques

 B. Characteristics to be considered
 1. Site geology
 2. Hydrology
 3. Topography
 4. Soil properties
5. Aquifer location
 a. Relationship to water table
 b. Wells presently in area
 c. Flow rate and direction of groundwater flow
 d. Groundwater quality
 e. Does aquifer connect with others
 f. Aquifer recharge area

6. Climatic conditions
 a. Normal
 b. Potential for natural disasters

7. Is site in or near environmentally sensitive areas
 a. Wetlands
 b. Shoreline
 c. Flood prone area
 d. Aquifer recharge zone
 e. Endangered species critical habitat
 f. Hurricane storm surge area
 g. Prime agricultural area
 h. Other

8. Subsidence problems

9. Proximity to residences/schools/etc.

10. Evacuation routes in area

11. Current character of surrounding area

12. Zoning of site and areas nearby

13. What plans currently exist for site and area

14. What transportation routes will be used

C. Why was this site chosen
 1. Were others considered
 2. Still under consideration
 3. Why were others rejected

VI. Environmental Quality
A. Surface drainage
 1. Is the site in a flood plain
 a. Which one? By whose standards?
 (1) How current are maps used to make determination
 b. What is the elevation of the land
 c. Dikes planned
 (1) Internal
 (2) Perimeter
 d. Diking required or desired
 (1) Height
 (2) How protected from erosion
 (3) Design storm used
 (4) Access to site over or through dikes
 2. Stormwater management
 a. How will it be controlled
 b. Treatment/discharges
 c. Effect on receiving body of water
 d. Will residuals remain (sludge management plans)
 e. Design storm used
 3. Hurricane vulnerability
 a. Is site in an area subject to storm surge
 b. Design storm specifications
c. Damage from wave action possible

d. For what levels of wind speed is facility designed

B. Groundwater protection

1. Groundwater resources
 a. Are aquifers used for drinking water
 (1) Now or possibly in future
 (2) Location of known wells
 b. Other uses of groundwater now or in future
 c. Proximity to surface water

2. Soil
 a. Physical characteristics, including permeability
 b. Chemical characteristics, including compatibility with wastes to be handled

3. Leachate Collection
 a. How will leachate be collected
 b. How will leachate be treated
 c. For how long will leachate be collected? Treated?

4. Liners
 a. What is required? Desired?
 b. What areas of the facility will be lined
 c. Integrity of liner
 (1) Type: clay or synthetic
 (2) Thickness
 (3) How constructed
 (4) Compatibility with wastes to be handled - how tested
 d. Remedial action possible

5. Caps
 a. Same questions as liners
 b. Erosion control
 c. Prevention of water standing on site, correction of settlement
 d. Revegetation planned, post closure maintenance

6. Deep well injection has additional concerns
 a. Relationship of aquifers to injection zone
 b. Compatibility of waste with area geology
 c. Remedial action possible
 d. Limitations of future land use for mining, etc.

C. Air emissions

1. What protection is afforded from which contaminants
2. Potential for unregulated emissions
3. Odor control plans
4. Who will be affected by emissions
 a. Direction of prevailing winds
 b. Frequency of "bad air" conditions
5. Control of vapors at various stages of process

VII. Transportation

A. Mode of transporation now and in future
 1. Truck
 2. Rail
 3. Barge
 4. Other possibilities

B. Containment of waste during transport
5. Aquifer location
 a. Relationship to water table
 b. Wells presently in area
 c. Flow rate and direction of groundwater flow
 d. Groundwater quality
 e. Does aquifer connect with others
 f. Aquifer recharge area
6. Climatic conditions
 a. Normal
 b. Potential for natural disasters
7. Is site in or near environmentally sensitive areas
 a. Wetlands
 b. Shoreline
 c. Flood prone area
 d. Aquifer recharge zone
 e. Endangered species critical habitat
 f. Hurricane storm surge area
 g. Prime agricultural area
 h. Other
8. Susbsidence problems
9. Proximity to residences/schools/etc.
10. Evacuation routes in area
11. Current character of surrounding area
12. Zoning of site and areas nearby
13. What plans currently exist for site and area
14. What transportation routes will be used

C. Why was this site chosen
 1. Were others considered
 2. Still under consideration
 3. Why were others rejected

VI. Environmental Quality
A. Surface drainage
 1. Is the site in a flood plain
 a. Which one? By whose standards?
 (1) How current are maps used to make determination
 b. What is the elevation of the land
 c. Dikes planned
 (1) Internal
 (2) Perimeter
 d. Diking required or desired
 (1) Height
 (2) How protected from erosion
 (3) Design storm used
 (4) Access to site over or through dikes
 2. Stormwater management
 a. How will it be controlled
 b. Treatment/discharges
 c. Effect on receiving body of water
 d. Will residuals remain (sludge management plans)
 e. Design storm used
 3. Hurricane vulnerability
 a. Is site in an area subject to storm surge
 b. Design storm specifications
c. Damage from wave action possible

d. For what levels of wind speed is facility designed

B. Groundwater protection
1. Groundwater resources
 a. Are aquifers used for drinking water
 (1) Now or possibly in future
 (2) Location of known wells
 b. Other uses of groundwater now or in future
 c. Proximity to surface water
2. Soil
 a. Physical characteristics, including permeability
 b. Chemical characteristics, including compatibility with wastes to be handled
3. Leachate Collection
 a. How will leachate be collected
 b. How will leachate be treated
 c. For how long will leachate be collected? Treated?
4. Liners
 a. What is required? Desired?
 b. What areas of the facility will be lined
 c. Integrity of liner
 (1) Type: clay or synthetic
 (2) Thickness
 (3) How constructed
 (4) Compatibility with wastes to be handled - how tested
 d. Remedial action possible
5. Caps
 a. Same questions as liners
 b. Erosion control
 c. Prevention of water standing on site, correction of settlement
 d. Revegetation planned, post closure maintenance
6. Deep well injection has additional concerns
 a. Relationship of aquifers to injection zone
 b. Compatibility of waste with area geology
 c. Remedial action possible
 d. Limitations of future land use for mining, etc.

C. Air emissions
1. What protection is afforded from which contaminants
2. Potential for unregulated emissions
3. Odor control plans
4. Who will be affected by emissions
 a. Direction of prevailing winds
 b. Frequency of "bad air" conditions
5. Control of vapors at various stages of process

VII. Transportation
A. Mode of transportation now and in future
1. Truck
2. Rail
3. Barge
4. Other possibilities

B. Containment of waste during transport
5. Aquifer location
 a. Relationship to water table
 b. Wells presently in area
 c. Flow rate and direction of groundwater flow
 d. Groundwater quality
 e. Does aquifer connect with others
 f. Aquifer recharge area

6. Climatic conditions
 a. Normal
 b. Potential for natural disasters

7. Is site in or near environmentally sensitive areas
 a. Wetlands
 b. Shoreline
 c. Flood prone area
 d. Aquifer recharge zone
 e. Endangered species critical habitat
 f. Hurricane storm surge area
 g. Prime agricultural area
 h. Other

8. Subsidence problems

9. Proximity to residences/schools/etc.

10. Evacuation routes in area

11. Current character of surrounding area

12. Zoning of site and areas nearby

13. What plans currently exist for site and area

14. What transportation routes will be used

C. Why was this site chosen
 1. Were others considered
 2. Still under consideration
 3. Why were others rejected

VI. Environmental Quality
 A. Surface drainage
 1. Is the site in a flood plain
 a. Which one? By whose standards?
 (1) How current are maps used to make determination
 b. What is the elevation of the land
 c. Dikes planned
 (1) Internal
 (2) Perimeter
 d. Diking required or desired
 (1) Height
 (2) How protected from erosion
 (3) Design storm used
 (4) Access to site over or through kikds
 2. Stormwater management
 a. How will it be controlled
 b. Treatment/discharges
 c. Effect on receiving body of water
 d. Will residuals remain (sludge management plans)
 e. Design storm used
 3. Hurricane vulnerability
 a. Is site in an area subject to storm surge
 b. Design storm specifications
c. Damage from wave action possible
d. For what levels of wind speed is facility designed

B. Groundwater protection
1. Groundwater resources
 a. Are aquifers used for drinking water
 (1) Now or possibly in future
 (2) Location of known wells
 b. Other uses of groundwater now or in future
 c. Proximity to surface water
2. Soil
 a. Physical characteristics, including permeability
 b. Chemical characteristics, including compatibility with wastes to be handled
3. Leachate Collection
 a. How will leachate be collected
 b. How will leachate be treated
 c. For how long will leachate be collected? Treated?
4. Liners
 a. What is required? Desired?
 b. What areas of the facility will be lined
 c. Integrity of liner
 (1) Type: clay or synthetic
 (2) Thickness
 (3) How constructed
 (4) Compatibility with wastes to be handled - how tested
 d. Remedial action possible
5. Caps
 a. Same questions as liners
 b. Erosion control
 c. Prevention of water standing on site, correction of settlement
 d. Revegetation planned, post closure maintenance
6. Deep well injection has additional concerns
 a. Relationship of aquifers to injection zone
 b. Compatibility of waste with area geology
 c. Remedial action possible
 d. Limitations of future land use for mining, etc.

C. Air emissions
1. What protection is afforded from which contaminants
2. Potential for unregulated emissions
3. Odor control plans
4. Who will be affected by emissions
 a. Direction of prevailing winds
 b. Frequency of "bad air" conditions
5. Control of vapors at various stages of process

VII. Transportation
A. Mode of transportation now and in future
 1. Truck
 2. Rail
 3. Barge
 4. Other possibilities

B. Containment of waste during transport
1. Type of container
 a. Bulk
 b. Drums
 c. Other
2. Protection against leakage
 a. Compatibility of wastes with packaging
 b. Reliability record of container
3. Labeling of containers

C. Who is responsible for transport
 1. Company responsible - what is their record
 2. Training of drivers
 a. Safe driving skills
 b. Emergency response
 3. Manifest system
 4. Labeling of trucks

D. Timing of arrivals
 1. Days
 2. Hours

E. Routing
 1. Routes to be used
 2. Any restrictions existing
 a. Who imposed them
 b. Who enforces them
 c. Can penalties be assessed on offenders
 3. Effects on area traffic
 4. Effects on area road conditions

F. Spill response
 1. Whose responsibility
 2. Cleanup techniques
 3. Who pays for cleanup

VIII. Operations
A. What actions will be taken when there are operating problems
 1. Back-up systems planned
 2. Start-ups and shutdowns
 a. Effects on permitted emissions
 b. Frequency/longevity anticipated

B. Emergency response
 1. What is included in the contingency plan
 2. How will fire protection be provided
 a. On-site equipment
 b. Mutual aid agreements
 c. Alarm systems

C. Site security
 1. Controlled entry
 2. Fencing
 3. Warning signs
 4. Surveillance systems
D. Personnel
1. Experience required
2. Technical levels and working experience of staff
3. Training plans
4. Participation in quality assurance/safety/etc. programs

IX. Enforcement
A. Regulations
1. Which apply to this facility and site
2. Permits needed
 a. Who grants each
 b. Public participation opportunities
3. Contents of permit applications
4. Penalties for noncompliance

B. Monitoring to ensure environmental protection
1. Techniques used
2. Equipment available
3. Frequency
4. Any citizen review planned – for example, Operations Review Committee
5. Will communities be informed when a sudden release occurs – how

C. Who is responsible for enforcement
1. Owner/operator – self-reporting system
2. Local level
 a. City
 b. County
 c. Regional or special district
3. State level
4. Federal level

D. Sequence and timing of possible enforcement actions
1. Corrective measures prescribed
2. Penalties assessed
3. Litigation

E. What is the government's capability to ensure compliance
At this time, at least five hazardous waste incinerators are proposed for the deep South (three in Florida, one in Georgia, and one in Alabama). However, government and industry studies, as well as anecdotal evidence, indicate that incineration technology is not yet safe. For example:

- A fire at a New Jersey hazardous waste incinerator ignited 45,000 gallons of PCBs, sending a toxic cloud over most of Gloucester County. Six people died as a result of explosions at the incinerator; the long-term health effects of the toxic exposure have not yet been quantified.¹

- Neighbors of a hazardous waste incinerator in Roebuck, South Carolina became ill and experienced burning eyes, sore throats and could smell odors from the incinerator almost four miles away. State officials have verified that groundwater below the incinerator has also been contaminated.²

- A milk farmer whose land borders a hazardous waste incinerator in Caldwell County, North Carolina has been told to stop drinking water from his well and is no longer able to sell his milk after soil, groundwater, creeks and vegetation near the incinerator were contaminated with toxic chemicals.³

It is an undeniable fact that the burning of hazardous waste creates pollutants which threaten health. At any level of destruction efficiency, the incineration of hazardous wastes emits toxic substances including heavy metals, acid gases and dioxin.⁴

These pollutants find their way into the air, land and water. Emissions may occur as part of the incineration process, as part of scrubber operations, or as fugitive emissions which escape during transportation, storage and improper incineration of the wastes. Animals, plants and people may ingest the emissions through air, water, soil, or as part of the food chain.

Emissions may affect people living hundreds of miles from the incinerator. According to a U.S. Environmental Protection Agency (EPA) Advisory Board, "Some of the compounds [emitted by incinerators] may have atmospheric lifetimes of weeks or more during summer and fall and may be dispersed over the hemisphere." In fact, EPA research shows that depending upon the chemicals in the emissions and co-occurring atmospheric chemicals/conditions, the transformation products can be more potent mutagens or carcinogens than the original emissions.⁵

A Public Interest Law Firm
Heavy metals such as arsenic, chromium and lead are not destroyed by incineration and can adhere to small particles which escape emission control equipment. It is the smallest particles which cause the most danger because they can be inhaled deep into the lungs. The amount of heavy metals which can be emitted is staggering. Research has shown that as much as 53 percent of heavy metals incinerated is released in stack gases. One incinerator was found to be emitting almost 6,000 pounds of lead a year. Exposure to heavy metals can cause cancer, respiratory ailments, liver ailments and neurological disorders. The EPA has warned that "human health risks from incineration of carcinogenic heavy metals may be significant." 10

Acid gases are also released from hazardous waste incinerators. Some of these emissions include hydrochloric acid, sulfur, nitrogen oxide and hydrofluoric acid. These emissions corrode the incinerator and deteriorate the performance of emission control equipment. Acid gases cause respiratory problems when they are ingested. These problems are especially severe during adverse meteorological conditions. Seventeen persons living near the Caldwell County, North Carolina incinerator have sought medical assistance after suffering symptoms consistent with the inhalation of acid vapors. 12

Hazardous waste incinerators create products of combustion which are even more toxic than the compounds originally burned. Dioxin, one product of combustion, is the most toxic chemical known to man. Less than one billionth of a pound of dioxin is lethal to guinea pigs. Dioxin is soluble in fat, giving it the potential to accumulate in living organisms and remain in the body for unusual lengths of time. Short-term exposure to dioxin can cause a painful and persistent skin disorder. Other possible health effects include liver damage, digestive disorders and skeletal muscular problems. No one knows what effects might occur from persistent low-level exposure but the chemical does cause cancer in mammals. No safe level of dioxin can be scientifically demonstrated.

Detection of subtle effects of incinerator emissions can have significant consequences to individuals and populations. Effects on behavior and/or physiological functions often occur at exposures that are significantly lower than those producing acute observable effects. 18

The extent of hazardous waste incineration's threat to human safety is a major concern of the EPA. There is no reliable data as to this risk, and for this reason the EPA recognizes that it cannot now responsibly be said that incineration is not seriously harmful to human beings. According to EPA scientists, "the deficiency in background knowledge is so great that not even risk assumptions are possible." For this reason, the EPA has entered into a contract with several scientists to study the health effects of hazardous waste incineration. In the meantime, an assumption of safety is not warranted.

This position paper was prepared by University of Georgia law student Douglas P. Haines. The project was supervised by attorney Laurie Fowler of the Legal Environmental Assistance Foundation (LEAP).
Organizing Toolbox: How To Deal With Proposed Facilities

"We had 400 people at our meeting and great experts to talk about health threats, but all those damned people wanted to talk about was property values!"

—Beth B., at a community rally that led to victory over Waste Management, Inc. in Eastern Pennsylvania

When I talk to new leaders looking for CCHW's help to block some nasty new facility, I get excited. I know this sometimes seems odd, but I have a good reason for it. After 5 years with CCHW, I've convinced it's easier to prevent something bad from happening than to clean it up later. Nearly every group that's used our formula* has won. Groups can lose though, if they ignore, deviate from or stop using the formula.

Just about every fight is 90% politics and 10% science. You may be motivated by health or environmental concerns and were shocked when you learned the possible effect of the facility. But not everybody feels that way. You may discover, as Beth did, your neighbors are more worried about property values than dioxins.

Instead of being annoyed that they're on the right side for what you see as the wrong reasons GO WITH IT! Listen to what's bothering people and respond to it, rather than ramming through your own agenda.

When Dr. Paul Connett (National Coalition Against Mass Burn Incineration) and I met with the Sugarloaf Citizens Association in rural Maryland (who are fighting a $500 million solid waste mass burn plan), folks emphasized health and environmental threats. But what Paul and I told them was that this is exactly why the county wants to build the incinerator out in rural areas! Stressing health and environment would only reinforce the county's decision!

So how else do you fight a proposed facility? How do you build People Power by expanding beyond just people who are in the impact zone? I believe the best way is through financial arguments.

In Sugarloaf, for example, the county wants to spend half a billion dollars on a plan destined to, at best, create more problems, when an investment of only 1% of that amount in recycling could solve the waste problem AND save money in the long-run.

One economic problem is what to do with the ash. Incinerators don't eliminate landfills—they aggravate landfill problems! At best, 40% of what's fed into an incinerator comes out as ash. Where do you put it? Time's up—in a landfill! But any old landfill? Probably not for much longer. According to the Environmental Defense Fund, the ash failed EPA's toxicity tests and ought to be classified as hazardous waste. Since EPA currently lacks the guts to do this, ash goes to "sanitary landfills" where it becomes a ticking economic (environmental) timebomb. Sooner or later, EPA will have to classify ash as hazardous waste and ash piles will start becoming candidates for Superfund. Local governments who've bitten the apple offered by Ogden Martin, Allied Signal (RESCO), BFI REFUEL, and Consamut will have huge cleanup liabilities: real tax burden. Already, for example, Philadelphia can't find places to dump its ash in the U.S. and barges it to Panama. Negotiating dumping contracts with Third World countries is a serious moral issue as well as a cost question.

The taxpayer gets stuck in other ways. For example, Ogden Martin demands and gets taxpayer-guaranteed "Industrial Revenue Bonds" (IRBs) to finance construction of incinerators. IRBs were what got Tuscaloosa in trouble over the Turkey. As income dropped, the

"Turkey" started running in the red, Tuscaloosa found itself in technical default on IRBs it had issued to give Consamut construction money. To avoid bankruptcy, Tuscaloosa had to subsidize the "Turkey" with taxpayer general revenue. Similarly, Lassen Community College in Susanville, CA, funded its incinerator with IRBs but went bankrupt when its incinerator kept losing money.

Talking taxes can be as complex as discussing the toxicity of cadmium, but it's important to ask who's going to be left holding the bag when things go wrong. Commercial companies that build or operate solid waste sites make sure they get the profits and you get the liability. The burden of liability is even more clearly on your shoulders when your local government is the owner and operator of the facility. Reducing liability risks through insurance has become nearly impossible, since underwriters don't want to issue pollution liability insurance anymore.

It can be hard to get your community united on the much-debated issue of "acceptable risk" to health and the environment. But, where I come from, money talks. And we, as organizers, ought to listen.

*How to Deal With A Proposed Facility, $5.95, CCHW.

Additional Reading

Dr. Paul Connett has a 9-page rundown on problems at 63 operating mass burn plants in the U.S. (Write him at 82 Judson Street, Canton, NY 13617, send him something to cover copying and postage.)
ORGANIZING TOOLBOX: GETTING AND USING HELP

By Will Collette

"If Things Don't Get Better Soon, I'm Going to Have to Ask You to Stop Helping Me."
—Motto seen on a social worker's wall.

There's a growing array of groups, agencies, and experts that offer their help to groups dealing with toxics and waste issues. Often this help is sincerely offered, gratefully received and truly helpful.

Sometimes it's not:

Too much help, or the wrong kind, can be toxic to grassroots groups. I believe almost any "helper" can really help IF your group is aware of its own needs, clear about the helper's agenda and stays in control of the relationship between the "helper" and you, the "helper."

TYPES OF HELPERS

Helpers: you are likely to find knocking at your door include:

• State, regional or national groups who say they identify with your cause and offer activities on your issue (protests, canvassing, news events).
• Potential allies who want to form coalitions with you.
• Lawyers who offer to represent you.
• Technical experts or labs who offer to sell or donate their services.
• Consultants. Some consultants even offer "packaged" campaigns where, for a fee, they promise to win your fight for you.
• Businesses wanting to market products or services related to your fight (e.g., water filter or bottled water dealers, vitamin sellers).
• Writers or filmmakers who think they can get your story sold to major media outlets.

Any of these could be useful if:

• You have an overall plan for your group.
• What they offer fits into that plan.
• You ask the hard questions and insist on concrete, specific answers.
• You make a clear agreement with the helper and
• You follow a simple rule: MAKE SURE you come out of any relationship in better shape than when you went into it.

and link you with other groups to build a movement for environmental justice.

As most of you know, we were founded as a result of Lois's struggle at Love Canal and her determination to help local groups FIGHT BACK. For a long time, we did this without getting paid. Now, in addition to member support, we get funding from churches and foundations that helps pay for our work and our salaries.

QUESTION #3: WHAT DO YOU HAVE TO GAIN?

What exactly does the helper have to offer? How much will it cost? Will you benefit by being associated with the "helper"? Will the benefits outweigh the costs—for example, what if the helper is linked to another cause or institution that might embarrass you?

How does the help fit into your plan? Can you do what you need to do, get what you need to get, without them?

QUESTION #4: WHO CONTROLS THE RELATIONSHIP?

Here's where we see a lot of problems: where the helper, in return for the help, starts to run the group. Examples: the lawyer who diverts the group's energy from organizing to working on the case (from which the lawyer stands to make big bucks). The national organization that gets you working on their national issue, taking time and energy away from your local fight. The "helper" with little understanding of what your community is all about, who starts dictating strategy and tactics. Or the helpers who play off one leader of the group against another, in order to manipulate the group into following their agenda.

QUESTION #5: WHERE HAS THE HELPER DONE THIS BEFORE?

What were the results? Ask for references. To be doubly sure, you can check with us to see if we know folks who've worked with that helper. For example, there are lots of characters running around who claim they helped out at Love Canal or take credit for other big toxics fights. Some really did help. Some were no help at all. Some simply happened to show up one day. Others are simply lying. You'll never know unless you check out those references.

See TOOLBOX, page 5
QUESTION #6: IF THE HELP IS BEING OFFERED AT NO CASH COST TO YOU, HOW IS THE HELP BEING FUNDING?

This is a good question people ask us all the time. The answer is CCHW is supported by you, our members (34%), foundations (49%) and churches (17%).

We take no government money and no money from corporate polluters.

There's one "helper" group, Clean Sites, Inc., that offers to serve as a neutral mediator to speed up toxic site clean-up agreements. That gets over 90 per cent of its funding from corporate polluters. Some groups fund their help by canvassing your community door-to-door. This could be a big help to your group—or it could leave the community drained of money when you try to do your own fund raising.

Other organizations get grants to support their help and may want to use your story to get more foundation or church support. I don't see anything wrong with that, provided they tell a true story and aren't in direct competition with your own fund-raising plans.

In addition to membership support, that's how CCHW funds itself.

NO SUCH THING AS A FREE LUNCH

We all need a helping hand from time to time. I was brought up on the old saying about not biting the hand that feeds you. But I've also learned that while you're taking the food from the one hand, you should watch to make sure the other hand isn't picking your pocket.
Organizing Toolbox: Structure

By Will Collette

Spring is a good time for—for taking stock. During the winter, many leaders spend a lot of energy dealing with burn-out, infighting, group inactivity and all of the other big and little problems that’ll creep into most groups, sooner or later. The three most common and most serious complaints I hear are:

- “I feel like I have to do all the work. Nobody helps me and I’m tired and I want to just quit, but I can’t!”
- “Nobody responds. They just sit there. Even when I tell them what to do, they don’t do it!”
- “The three of us on the executive committee are getting on each other’s nerves. Everybody wants to pull a power play. We’re not getting anything done except fight with each other.”

In most cases, all three of these problems have their roots in how the organization is set up, its structure. Solving these problems calls for a good, close look at structure (and maybe some major changes).

Question: How much structure do you need?

Answer: Enough. Enough to make decisions and enough to effectively involve your members so that (a) they feel needed and (b) you and the other core group members don’t do it all.

You don’t have to incorporate! In fact, there are lots of reasons to remain an “unincorporated association” (if you haven’t incorporated, that’s what you are now). CCHW’s “Should Your Group Incorporate?” (#16 on our list, $5.25) gives more detailed advice.

Most groups make decisions by setting up a pyramid structure that looks like this:

This structure is very efficient for decision-making, since decisions are mainly made by the leaders at the very top. Exception: occasionally, leaders of a pyramid will take a decision to the general membership. The general membership, unaccustomed to being asked, sit there like mushrooms, confirming the top leadership’s impression that, for most of the members, “the lights are on but nobody’s home.”

I talk to leaders who tell me that, after six months of a fight, “only a handful of us are left to do the work, nobody’s coming to meetings and they’re all stupid or apathetic.” How long would you stay active in a group if your only function was to warm a seat? These problems are the price to be paid for a top-down decision-making structure.

The opposite extreme is a freeform, leaderless structure (often called a “collective”) where decisions are made only by consensus. Everybody’s at the same level. Very democratic. The problem is that decision-making becomes agony. Even though everyone feels like an important part of the group, such paralysis may occur that the group’s destroyed as a functioning organization. How often is it that everyone in any group will agree on critical issues? In a true collective, all big decisions have to have everybody’s approval. Some of the antinuke groups of the 70’s used this model.

Here’s a compromise model we’ve seen at work with CATS (Citizens Against Toxic Sites) of New Castle, PA that balances the two extremes:

When new people become members, they’re asked to join one of the committees. There, they get a specific task that matches what they know how to do and like to do. This is a great way to spread around the work and prevent burn-out. Each committee has a general “mission” and can set up sub-committees if it needs to (e.g., Public Relations has a squad of folks who do the CATS newsletter, another that’s their Speakers’ Bureau, others that do flyers, etc.) Coordination comes from the Executive Committee which is comprised of two delegates from each committee, plus the two elected co-chairs. Committees report in, compare notes and take “marching orders” back out to the committee membership. Regular membership meetings are held to give everybody a share in “owning” the organization.

Think about ways you can set up your organization in a way that encourages people to join, get active and stay active. People quit when they feel useless. They also quit sometimes if they’re asked to do things that are either too much for them to handle or too vague or undirected (leaving them feeling that “I don’t know what I’m supposed to be doing”).

Maybe your organization is doing fine. If so, “if it ain’t broke, don’t fix it!” But if any of the problems we’ve talked about or their symptoms are creeping into your group, think about it. Before you start blaming yourself for doing something wrong, (or worse, blaming the people for being somehow “mentally defective”) look to see if a good organizational shake-up might be in order.